Pathwise integration with respect to paths of finite quadratic variation
We study a pathwise integral with respect to paths of finite quadratic variation, defined as the limit of non-anticipative Riemann sums for gradient-type integrands. We show that the integral satisfies a pathwise isometry property, analogous to the well-known Ito isometry for stochastic integrals. T...
Príomhchruthaitheoirí: | Ananova, A, Cont, R |
---|---|
Formáid: | Journal article |
Foilsithe / Cruthaithe: |
Elsevier
2016
|
Míreanna comhchosúla
Míreanna comhchosúla
-
On pathwise quadratic variation for càdlàg functions
de réir: Chiu, H, et al.
Foilsithe / Cruthaithe: (2018) -
Pathwise integration and change of variable formulas for continuous
paths with arbitrary regularity
de réir: Cont, R, et al.
Foilsithe / Cruthaithe: (2019) -
Quadratic variation and quadratic roughness
de réir: Cont, R, et al.
Foilsithe / Cruthaithe: (2022) -
Existence of Lévy's area and pathwise integration
de réir: Imkeller, P, et al.
Foilsithe / Cruthaithe: (2015) -
Local times for typical price paths and pathwise Tanaka formulas
de réir: Perkowski, N, et al.
Foilsithe / Cruthaithe: (2016)