Pathwise integration with respect to paths of finite quadratic variation
We study a pathwise integral with respect to paths of finite quadratic variation, defined as the limit of non-anticipative Riemann sums for gradient-type integrands. We show that the integral satisfies a pathwise isometry property, analogous to the well-known Ito isometry for stochastic integrals. T...
Hoofdauteurs: | Ananova, A, Cont, R |
---|---|
Formaat: | Journal article |
Gepubliceerd in: |
Elsevier
2016
|
Gelijkaardige items
-
On pathwise quadratic variation for càdlàg functions
door: Chiu, H, et al.
Gepubliceerd in: (2018) -
Pathwise integration and change of variable formulas for continuous
paths with arbitrary regularity
door: Cont, R, et al.
Gepubliceerd in: (2019) -
Quadratic variation and quadratic roughness
door: Cont, R, et al.
Gepubliceerd in: (2022) -
Existence of Lévy's area and pathwise integration
door: Imkeller, P, et al.
Gepubliceerd in: (2015) -
Local times for typical price paths and pathwise Tanaka formulas
door: Perkowski, N, et al.
Gepubliceerd in: (2016)