Pathwise integration with respect to paths of finite quadratic variation
We study a pathwise integral with respect to paths of finite quadratic variation, defined as the limit of non-anticipative Riemann sums for gradient-type integrands. We show that the integral satisfies a pathwise isometry property, analogous to the well-known Ito isometry for stochastic integrals. T...
Главные авторы: | Ananova, A, Cont, R |
---|---|
Формат: | Journal article |
Опубликовано: |
Elsevier
2016
|
Схожие документы
-
On pathwise quadratic variation for càdlàg functions
по: Chiu, H, и др.
Опубликовано: (2018) -
Pathwise integration and change of variable formulas for continuous
paths with arbitrary regularity
по: Cont, R, и др.
Опубликовано: (2019) -
Quadratic variation and quadratic roughness
по: Cont, R, и др.
Опубликовано: (2022) -
Existence of Lévy's area and pathwise integration
по: Imkeller, P, и др.
Опубликовано: (2015) -
Local times for typical price paths and pathwise Tanaka formulas
по: Perkowski, N, и др.
Опубликовано: (2016)