Pathwise integration with respect to paths of finite quadratic variation
We study a pathwise integral with respect to paths of finite quadratic variation, defined as the limit of non-anticipative Riemann sums for gradient-type integrands. We show that the integral satisfies a pathwise isometry property, analogous to the well-known Ito isometry for stochastic integrals. T...
Huvudupphovsmän: | Ananova, A, Cont, R |
---|---|
Materialtyp: | Journal article |
Publicerad: |
Elsevier
2016
|
Liknande verk
Liknande verk
-
On pathwise quadratic variation for càdlàg functions
av: Chiu, H, et al.
Publicerad: (2018) -
Pathwise integration and change of variable formulas for continuous
paths with arbitrary regularity
av: Cont, R, et al.
Publicerad: (2019) -
Quadratic variation and quadratic roughness
av: Cont, R, et al.
Publicerad: (2022) -
Existence of Lévy's area and pathwise integration
av: Imkeller, P, et al.
Publicerad: (2015) -
Local times for typical price paths and pathwise Tanaka formulas
av: Perkowski, N, et al.
Publicerad: (2016)