An adversarial training framework for mitigating algorithmic biases in clinical machine learning
<p>Machine learning is becoming increasingly prominent in healthcare. Although its benefits are clear, growing attention is being given to how these tools may exacerbate existing biases and disparities. In this study, we introduce an adversarial training framework that is capable of mitigating...
Հիմնական հեղինակներ: | Yang, J, Soltan, AAS, Eyre, DW, Yang, Y, Clifton, DA |
---|---|
Ձևաչափ: | Journal article |
Լեզու: | English |
Հրապարակվել է: |
Springer Nature
2023
|
Նմանատիպ նյութեր
-
An adversarial training framework for mitigating algorithmic biases in clinical machine learning
: Jenny Yang, և այլն
Հրապարակվել է: (2023-03-01) -
Algorithmic fairness and bias mitigation for clinical machine learning with deep reinforcement learning
: Yang, J, և այլն
Հրապարակվել է: (2023) -
Mitigating machine learning bias between high income and low–middle income countries for enhanced model fairness and generalizability
: Yang, J, և այլն
Հրապարակվել է: (2024) -
Privacy-aware early detection of COVID-19 through adversarial training
: Rohanian, M, և այլն
Հրապարակվել է: (2022) -
Deep reinforcement learning for multi-class imbalanced training: applications in healthcare
: Yang, J, և այլն
Հրապարակվել է: (2023)