A Stein goodness-of-test for exponential random graph models
We propose and analyse a novel nonparametric goodness-of-fit testing procedure for exchangeable exponential random graph model (ERGM) when a single network realisation is observed. The test determines how likely it is that the observation is generated from a target unnormalised ERGM density. Our tes...
Hauptverfasser: | Xu, W, Reinert, G |
---|---|
Format: | Journal article |
Sprache: | English |
Veröffentlicht: |
Journal of Machine Learning Research
2021
|
Ähnliche Einträge
-
AgraSSt: approximate graph Stein statistics for interpretable assessment of implicit graph generators
von: Xu, W, et al.
Veröffentlicht: (2023) -
On RKHS choices for assessing graph generators via kernel Stein statistics
von: Weckbecker, M, et al.
Veröffentlicht: (2022) -
A kernelised Stein statistic for assessing implicit generative models
von: Xu, W, et al.
Veröffentlicht: (2023) -
Approximating stationary distributions of fast mixing Glauber dynamics, with applications to exponential random graphs
von: Reinert, G, et al.
Veröffentlicht: (2019) -
New specifications for exponential random graph models
von: Snijders, T, et al.
Veröffentlicht: (2006)