Fully abstract models for effectful λ-calculi via category-theoretic logical relations

We present a construction which, under suitable assumptions, takes a model of Moggi’s computational λ-calculus with sum types, effect operations and primitives, and yields a model that is adequate and fully abstract. The construction, which uses the theory of fibrations, categorical glueing, ⊤⊤-lift...

Täydet tiedot

Bibliografiset tiedot
Päätekijät: Kammar, O, Katsumata, S-Y, Saville, P
Aineistotyyppi: Conference item
Kieli:English
Julkaistu: Association for Computing Machinery 2022
Kuvaus
Yhteenveto:We present a construction which, under suitable assumptions, takes a model of Moggi’s computational λ-calculus with sum types, effect operations and primitives, and yields a model that is adequate and fully abstract. The construction, which uses the theory of fibrations, categorical glueing, ⊤⊤-lifting, and ⊤⊤-closure, takes inspiration from O’Hearn & Riecke’s fully abstract model for PCF. Our construction can be applied in the category of sets and functions, as well as the category of diffeological spaces and smooth maps and the category of quasi-Borel spaces, which have been studied as semantics for differentiable and probabilistic programming.