Decision-making under uncertainty: using MLMC for efficient estimation of EVPPI
In this paper, we develop a very efficient approach to the Monte Carlo estimation of the expected value of partial perfect information (EVPPI) that measures the average benefit of knowing the value of a subset of uncertain parameters involved in a decision model. The calculation of EVPPI is inherent...
Hlavní autoři: | Giles, M, Goda, T |
---|---|
Médium: | Journal article |
Vydáno: |
Springer Verlag
2018
|
Podobné jednotky
-
MLMC for nested expectations
Autor: Giles, MB
Vydáno: (2018) -
MLMC techniques for discontinuous functions
Autor: Giles, MB
Vydáno: (2024) -
A CLT for infinitely stratified estimators, with applications to debiased MLMC *
Autor: Zheng Zeyu, a další
Vydáno: (2017-01-01) -
Convergence Analysis and Cost Estimate of an MLMC-HDG Method for Elliptic PDEs with Random Coefficients
Autor: Meng Li, a další
Vydáno: (2021-05-01) -
Probabilistic threshold analysis by pairwise stochastic approximation for decision-making under uncertainty
Autor: Takashi Goda, a další
Vydáno: (2021-10-01)