Exploring probabilistic models for semi-supervised learning
<p>Deep neural networks are increasingly harnessed for computer vision tasks, thanks to their robust performance. However, their training demands large-scale labeled datasets, which are labor-intensive to prepare. Semi-supervised learning (SSL) offers a solution by learning from a mix of label...
Autore principale: | Wang, J |
---|---|
Altri autori: | Lukasiewicz, T |
Natura: | Tesi |
Lingua: | English |
Pubblicazione: |
2023
|
Soggetti: |
Documenti analoghi
Documenti analoghi
-
Generative modelling for supervised, unsupervised and private learning
di: Jordon, J
Pubblicazione: (2021) -
Variational autoencoders for supervision, calibration and multimodal learning
di: Joy, TW
Pubblicazione: (2022) -
Tractable probabilistic models for causal learning and reasoning
di: Wang, B
Pubblicazione: (2023) -
Multimodal probabilistic reasoning for prediction and coordination problems in machine learning
di: Zand, J
Pubblicazione: (2021) -
Learning with multimodal self-supervision
di: Chen, H
Pubblicazione: (2021)