Video understanding using multimodal deep learning

<p>Our experience of the world is multimodal, however deep learning networks have been traditionally designed for and trained on unimodal inputs such as images, audio segments or text. In this thesis we develop strategies to exploit multimodal information (in the form of vision, text, speech a...

Description complète

Détails bibliographiques
Auteur principal: Nagrani, A
Autres auteurs: Zisserman, A
Format: Thèse
Langue:English
Publié: 2020
Sujets:

Documents similaires