Video understanding using multimodal deep learning
<p>Our experience of the world is multimodal, however deep learning networks have been traditionally designed for and trained on unimodal inputs such as images, audio segments or text. In this thesis we develop strategies to exploit multimodal information (in the form of vision, text, speech a...
Autor principal: | Nagrani, A |
---|---|
Outros Autores: | Zisserman, A |
Formato: | Thesis |
Idioma: | English |
Publicado em: |
2020
|
Assuntos: |
Registos relacionados
-
Sign language understanding using multimodal learning
Por: Momeni, L
Publicado em: (2024) -
Understanding Multimodal Popularity Prediction of Social Media Videos With Self-Attention
Por: Adam Bielski, et al.
Publicado em: (2018-01-01) -
End-to-end learning, and audio-visual human-centric video understanding
Por: Brown, A
Publicado em: (2022) -
Holistic image understanding with deep learning and dense random fields
Por: Zheng, S
Publicado em: (2016) -
Learning with multimodal self-supervision
Por: Chen, H
Publicado em: (2021)