Video understanding using multimodal deep learning
<p>Our experience of the world is multimodal, however deep learning networks have been traditionally designed for and trained on unimodal inputs such as images, audio segments or text. In this thesis we develop strategies to exploit multimodal information (in the form of vision, text, speech a...
Huvudupphovsman: | Nagrani, A |
---|---|
Övriga upphovsmän: | Zisserman, A |
Materialtyp: | Lärdomsprov |
Språk: | English |
Publicerad: |
2020
|
Ämnen: |
Liknande verk
Liknande verk
-
Sign language understanding using multimodal learning
av: Momeni, L
Publicerad: (2024) -
Understanding Multimodal Popularity Prediction of Social Media Videos With Self-Attention
av: Adam Bielski, et al.
Publicerad: (2018-01-01) -
End-to-end learning, and audio-visual human-centric video understanding
av: Brown, A
Publicerad: (2022) -
Holistic image understanding with deep learning and dense random fields
av: Zheng, S
Publicerad: (2016) -
Learning with multimodal self-supervision
av: Chen, H
Publicerad: (2021)