Video understanding using multimodal deep learning
<p>Our experience of the world is multimodal, however deep learning networks have been traditionally designed for and trained on unimodal inputs such as images, audio segments or text. In this thesis we develop strategies to exploit multimodal information (in the form of vision, text, speech a...
Автор: | Nagrani, A |
---|---|
Інші автори: | Zisserman, A |
Формат: | Дисертація |
Мова: | English |
Опубліковано: |
2020
|
Предмети: |
Схожі ресурси
-
Sign language understanding using multimodal learning
за авторством: Momeni, L
Опубліковано: (2024) -
Understanding Multimodal Popularity Prediction of Social Media Videos With Self-Attention
за авторством: Adam Bielski, та інші
Опубліковано: (2018-01-01) -
End-to-end learning, and audio-visual human-centric video understanding
за авторством: Brown, A
Опубліковано: (2022) -
Holistic image understanding with deep learning and dense random fields
за авторством: Zheng, S
Опубліковано: (2016) -
Learning with multimodal self-supervision
за авторством: Chen, H
Опубліковано: (2021)