Definable henselian valuations

<p style="text-align:justify;"> In this note we investigate the question when a henselian valued field carries a nontrivial ∅-definable henselian valuation (in the language of rings). This is clearly not possible when the field is either separably or real closed, and, by the work of...

Full description

Bibliographic Details
Main Authors: Jahnke, F, Koenigsmann, J
Format: Journal article
Published: Cambridge University Press 2015
_version_ 1826294394635943936
author Jahnke, F
Koenigsmann, J
author_facet Jahnke, F
Koenigsmann, J
author_sort Jahnke, F
collection OXFORD
description <p style="text-align:justify;"> In this note we investigate the question when a henselian valued field carries a nontrivial ∅-definable henselian valuation (in the language of rings). This is clearly not possible when the field is either separably or real closed, and, by the work of Prestel and Ziegler, there are further examples of henselian valued fields which do not admit a ∅-definable nontrivial henselian valuation. We give conditions on the residue field which ensure the existence of a parameter-free definition. In particular, we show that a henselian valued field admits a nontrivial henselian ∅-definable valuation when the residue field is separably closed or sufficiently nonhenselian, or when the absolute Galois group of the (residue) field is nonuniversal. </p>
first_indexed 2024-03-07T03:44:57Z
format Journal article
id oxford-uuid:bf25fc8a-287c-4f08-91ea-6b4e20b7ae81
institution University of Oxford
last_indexed 2024-03-07T03:44:57Z
publishDate 2015
publisher Cambridge University Press
record_format dspace
spelling oxford-uuid:bf25fc8a-287c-4f08-91ea-6b4e20b7ae812022-03-27T05:45:15ZDefinable henselian valuationsJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:bf25fc8a-287c-4f08-91ea-6b4e20b7ae81Symplectic Elements at OxfordCambridge University Press2015Jahnke, FKoenigsmann, J <p style="text-align:justify;"> In this note we investigate the question when a henselian valued field carries a nontrivial ∅-definable henselian valuation (in the language of rings). This is clearly not possible when the field is either separably or real closed, and, by the work of Prestel and Ziegler, there are further examples of henselian valued fields which do not admit a ∅-definable nontrivial henselian valuation. We give conditions on the residue field which ensure the existence of a parameter-free definition. In particular, we show that a henselian valued field admits a nontrivial henselian ∅-definable valuation when the residue field is separably closed or sufficiently nonhenselian, or when the absolute Galois group of the (residue) field is nonuniversal. </p>
spellingShingle Jahnke, F
Koenigsmann, J
Definable henselian valuations
title Definable henselian valuations
title_full Definable henselian valuations
title_fullStr Definable henselian valuations
title_full_unstemmed Definable henselian valuations
title_short Definable henselian valuations
title_sort definable henselian valuations
work_keys_str_mv AT jahnkef definablehenselianvaluations
AT koenigsmannj definablehenselianvaluations