Defining ℤ in ℚ
We show that Z is definable in Q by a universal first-order formula in the language of rings. We also present an ∀∃-formula for Z in Q with just one universal quantifier. We exhibit new diophantine subsets of Q like the complement of the image of the norm map under a quadratic extension, and we give...
Hlavní autor: | Koenigsmann, J |
---|---|
Médium: | Journal article |
Vydáno: |
Princeton University, Department of Mathematics
2016
|
Podobné jednotky
-
Defining $\mathbb{Z}$ in $\mathbb{Q}$
Autor: Koenigsmann, J
Vydáno: (2010) -
Defining Transcendentals in Function Fields.
Autor: Koenigsmann, J
Vydáno: (2002) -
Definable henselian valuations
Autor: Jahnke, F, a další
Vydáno: (2012) -
Defining coarsenings of valuations
Autor: Jahnke, F, a další
Vydáno: (2017) -
Definable henselian valuations
Autor: Jahnke, F, a další
Vydáno: (2015)