Measuring and forecasting financial variability using realised variance with and without a model.
We use high frequency financial data to proxy, via the realised variance, each day's financial variability. Based on a semiparametric stochastic volatility process, a limit theory shows you can represent the proxy as a true underlying variability plus some measurement noise with known character...
Главные авторы: | Barndorff-Nielsen, O, Nielsen, B, Shephard, N, Ysusi, C |
---|---|
Формат: | Working paper |
Язык: | English |
Опубликовано: |
Nuffield College (University of Oxford)
2002
|
Схожие документы
-
Measuring and forecasting financial variability using realised variance.
по: Barndorff-Nielsen, O, и др.
Опубликовано: (2004) -
How Accurate Is the Asymptotic Approximation to the Distribution of Realised Variance?
по: Barndorff-Nielsen, O, и др.
Опубликовано: (2005) -
Impact of jumps on returns and realised variances: econometric analysis of time-deformed Lévy processes
по: Barndorff-Nielsen, O, и др.
Опубликовано: (2005) -
Impact of Jumps on Returns and Realised Variances: Econometric Analysis of Time-Deformed Levy Processes.
по: Barndorff-Nielsen, O, и др.
Опубликовано: (2006) -
Impact of jumps on returns and realised variances: econometric analysis of time-deformed Levy processes.
по: Barndorff-Nielsen, O, и др.
Опубликовано: (2003)