Physical and chemical considerations of damage induced in protein crystals by synchrotron radiation: a radiation chemical perspective.

Radiation-induced degradation of protein or DNA samples by synchrotron radiation is an inherent problem in X-ray crystallography, especially at the 'brighter' light sources. This short review gives a radiation chemical perspective on some of the physical and chemical processes that need to...

Full description

Bibliographic Details
Main Authors: O'Neill, P, Stevens, D, Garman, E
Format: Conference item
Published: 2002
Description
Summary:Radiation-induced degradation of protein or DNA samples by synchrotron radiation is an inherent problem in X-ray crystallography, especially at the 'brighter' light sources. This short review gives a radiation chemical perspective on some of the physical and chemical processes that need to be considered in understanding potential pathways leading to the gradual degradation of the samples. Under the conditions used for X-ray crystallography at a temperature of <100 K in the presence of cryoprotectant agents, the majority of radiation damage of the protein samples arises from direct ionization of the amino acid residues and their associated water molecules. Some of the chemical processes that may occur at these protein centres, such as bond scission, are discussed. Several approaches are discussed that may reduce radiation damage, using agents known from radiation chemistry to minimize radical-induced degradation of the sample.