Regime-based analysis of aerosol-cloud interactions

Previous global satellite studies into the indirect aerosol effect have relied on determining the sensitivity of derived Cloud Droplet Number Concentration (Nd) to co-located Aerosol Optical Depth (AOD). These studies generally find a positive Nd sensitivity to AOD changes over ocean, but some find...

Descrición completa

Detalles Bibliográficos
Main Authors: Gryspeerdt, E, Stier, P
Formato: Journal article
Idioma:English
Publicado: American Geophysical Union 2012
Descripción
Summary:Previous global satellite studies into the indirect aerosol effect have relied on determining the sensitivity of derived Cloud Droplet Number Concentration (Nd) to co-located Aerosol Optical Depth (AOD). These studies generally find a positive Nd sensitivity to AOD changes over ocean, but some find a negative sensitivity over land, in contrast to that predicted by models and theory. Here we investigate the Nd sensitivity to AOD in different cloud regimes, determined using a k-means clustering process on retrieved cloud properties. We find the strongest positive Nd sensitivity in the stratiform regimes over both land and ocean, providing the majority of the total sensitivity. The negative sensitivity previously observed over land is generated by the low cloud fraction regimes, suggesting that it is due to the difficulty of retrieving Nd at low cloud fractions. When considering a mean sensitivity, weighted by liquid cloud fraction to account for sampling biases, we find an increased sensitivity over land, in some regions becoming positive. This highlights the importance of regime based analysis when studying aerosol indirect effects.