Benchmarking optimality of time series classification methods in distinguishing diffusions
Statistical optimality benchmarking is crucial for analyzing and designing time series classification (TSC) algorithms. This study proposes to benchmark the optimality of TSC algorithms in distinguishing diffusion processes by the likelihood ratio test (LRT). The LRT is an optimal classifier by the...
Hoofdauteurs: | Zhang, Z, Lu, F, Fei, EX, Lyons, T, Kevrekidis, Y, Woolf, T |
---|---|
Formaat: | Internet publication |
Taal: | English |
Gepubliceerd in: |
2023
|
Gelijkaardige items
-
Quantifying Transient Uncertainty in the BEAVRS Benchmark Using Time Series Analysis Methods
door: Kumar, Shikhar, et al.
Gepubliceerd in: (2017) -
Class-incremental learning for time series: benchmark and evaluation
door: Qiao, Zhongzheng, et al.
Gepubliceerd in: (2024) -
Deep learning methods for financial time series classification
door: Chua, Dian Lun
Gepubliceerd in: (2021) -
Bayesian time series classification
door: Sykacek, P, et al.
Gepubliceerd in: (2002) -
Distinguishing case series from cohort studies.
door: Dekkers, O, et al.
Gepubliceerd in: (2012)