Asymptotic properties of recursive particle maximum likelihood estimation
Using stochastic gradient search and the optimal filter derivative, it is possible to perform recursive (i.e., online) maximum likelihood estimation in a non-linear state-space model. As the optimal filter and its derivative are analytically intractable for such a model, they need to be approximated...
Autores principales: | Tadic, VZB, Doucet, A |
---|---|
Formato: | Conference item |
Lenguaje: | English |
Publicado: |
IEEE
2019
|
Ejemplares similares
-
Asymptotic properties of recursive particle maximum likelihood estimation
por: Tadic, VZB, et al.
Publicado: (2020) -
Optimal recursive maximum likelihood estimation
Publicado: (2003) -
A distributed recursive maximum likelihood implementation for sensor registration
por: Kantas, N, et al.
Publicado: (2006) -
Bias of particle approximations to optimal filter derivative
por: Tadic, VZB, et al.
Publicado: (2021) -
Particle methods for maximum likelihood estimation in latent variable models
por: Johansen, A, et al.
Publicado: (2008)