Asymptotic properties of recursive particle maximum likelihood estimation
Using stochastic gradient search and the optimal filter derivative, it is possible to perform recursive (i.e., online) maximum likelihood estimation in a non-linear state-space model. As the optimal filter and its derivative are analytically intractable for such a model, they need to be approximated...
Главные авторы: | Tadic, VZB, Doucet, A |
---|---|
Формат: | Conference item |
Язык: | English |
Опубликовано: |
IEEE
2019
|
Схожие документы
-
Asymptotic properties of recursive particle maximum likelihood estimation
по: Tadic, VZB, и др.
Опубликовано: (2020) -
Optimal recursive maximum likelihood estimation
Опубликовано: (2003) -
A distributed recursive maximum likelihood implementation for sensor registration
по: Kantas, N, и др.
Опубликовано: (2006) -
Bias of particle approximations to optimal filter derivative
по: Tadic, VZB, и др.
Опубликовано: (2021) -
Particle methods for maximum likelihood estimation in latent variable models
по: Johansen, A, и др.
Опубликовано: (2008)