The Λ-coalescent speed of coming down from infinity
Consider a Λ-coalescent that comes down from infinity (meaning that it starts from a configuration containing infinitely many blocks at time 0, yet it has a finite number Nt of blocks at any positive time t>0). We exhibit a deterministic function υ: (0, ∞) → (0, ∞) such that Nt/υ(t) → 1, almo...
Autors principals: | Berestycki, J, Berestycki, N, Limic, V |
---|---|
Format: | Journal article |
Idioma: | English |
Publicat: |
2010
|
Ítems similars
-
Asymptotic sampling formulae for Λ-coalescents
per: Berestycki, J, et al.
Publicat: (2014) -
A small-time coupling between Λ-coalescents and branching processes
per: Berestycki, J, et al.
Publicat: (2014) -
Small-time behavior of beta coalescents
per: Berestycki, J, et al.
Publicat: (2008) -
Beta-coalescents and continuous stable random trees
per: Berestycki, J, et al.
Publicat: (2007) -
Exchangeable fragmentation-coalescence processes and their equilibrium measures
per: Berestycki, J
Publicat: (2004)