Asymptotics for the spectral and walk dimension as fractals approach Euclidean space

We discuss the behavior of the dynamic dimension exponents for families of fractals based on the Sierpinski gasket and carpet. As the length scale factor for the family tends to infinity, the lattice approximations to the fractals look more like the tetrahedral or cubic lattice in Euclidean space an...

Täydet tiedot

Bibliografiset tiedot
Päätekijät: Hambly, B, Kumagai, T
Aineistotyyppi: Journal article
Kieli:English
Julkaistu: 2002
Kuvaus
Yhteenveto:We discuss the behavior of the dynamic dimension exponents for families of fractals based on the Sierpinski gasket and carpet. As the length scale factor for the family tends to infinity, the lattice approximations to the fractals look more like the tetrahedral or cubic lattice in Euclidean space and the fractal dimension converges to that of the embedding space. However, in the Sierpinski gasket case, the spectral dimension converges to two for all dimensions. In two dimensions, we prove a conjecture made in the physics literature concerning the rate of convergence. On the other hand, for natural families of Sierpinski carpets, the spectral dimension converges to the dimension of the embedding Euclidean space. In general, we demonstrate that for both cases of finitely and infinitely ramified fractals, a variety of asymptotic values for the spectral dimension can be achieved.