Asymptotics for the spectral and walk dimension as fractals approach Euclidean space
We discuss the behavior of the dynamic dimension exponents for families of fractals based on the Sierpinski gasket and carpet. As the length scale factor for the family tends to infinity, the lattice approximations to the fractals look more like the tetrahedral or cubic lattice in Euclidean space an...
Auteurs principaux: | Hambly, B, Kumagai, T |
---|---|
Format: | Journal article |
Langue: | English |
Publié: |
2002
|
Documents similaires
-
Random fractal strings: Their zeta functions, complex dimensions and spectral asymptotics
par: Hambly, B, et autres
Publié: (2006) -
Random fractal strings: their zeta functions, complex dimensions and spectral asymptotics
par: Hambly, B, et autres
Publié: (2003) -
Multifractal formalisms for the local spectral and walk dimensions
par: Hambly, B, et autres
Publié: (2002) -
Finitely ramified graph-directed fractals, spectral asymptotics and the multidimensional renewal theorem
par: Hambly, B, et autres
Publié: (2003) -
Heat kernel estimates and homogenization for asymptotically lower dimensional processes on some nested fractals
par: Hambly, B, et autres
Publié: (1998)