eFORGE: A Tool for Identifying Cell Type-Specific Signal in Epigenomic Data

Epigenome-wide association studies (EWAS) provide an alternative approach for studying human disease through consideration of non-genetic variants such as altered DNA methylation. To advance the complex interpretation of EWAS, we developed eFORGE (http://eforge.cs.ucl.ac.uk/), a new standalone and w...

Olles dieđut

Bibliográfalaš dieđut
Váldodahkkit: Breeze, C, Paul, D, van Dongen, J, Butcher, L, Ambrose, J, Barrett, J, Lowe, R, Rakyan, V, Iotchkova, V, Frontini, M, Downes, K, Ouwehand, W, Laperle, J, Jacques, P, Bourque, G, Bergmann, A, Siebert, R, Vellenga, E, Saeed, S, Matarese, F, Martens, J, Stunnenberg, H, Teschendorff, A, Herrero, J, Birney, E, Dunham, I, Beck, S
Materiálatiipa: Journal article
Giella:English
Almmustuhtton: Elsevier 2016
_version_ 1826294920491565056
author Breeze, C
Paul, D
van Dongen, J
Butcher, L
Ambrose, J
Barrett, J
Lowe, R
Rakyan, V
Iotchkova, V
Frontini, M
Downes, K
Ouwehand, W
Laperle, J
Jacques, P
Bourque, G
Bergmann, A
Siebert, R
Vellenga, E
Saeed, S
Matarese, F
Martens, J
Stunnenberg, H
Teschendorff, A
Herrero, J
Birney, E
Dunham, I
Beck, S
author_facet Breeze, C
Paul, D
van Dongen, J
Butcher, L
Ambrose, J
Barrett, J
Lowe, R
Rakyan, V
Iotchkova, V
Frontini, M
Downes, K
Ouwehand, W
Laperle, J
Jacques, P
Bourque, G
Bergmann, A
Siebert, R
Vellenga, E
Saeed, S
Matarese, F
Martens, J
Stunnenberg, H
Teschendorff, A
Herrero, J
Birney, E
Dunham, I
Beck, S
author_sort Breeze, C
collection OXFORD
description Epigenome-wide association studies (EWAS) provide an alternative approach for studying human disease through consideration of non-genetic variants such as altered DNA methylation. To advance the complex interpretation of EWAS, we developed eFORGE (http://eforge.cs.ucl.ac.uk/), a new standalone and web-based tool for the analysis and interpretation of EWAS data. eFORGE determines the cell type-specific regulatory component of a set of EWAS-identified differentially methylated positions. This is achieved by detecting enrichment of overlap with DNase I hypersensitive sites across 454 samples (tissues, primary cell types, and cell lines) from the ENCODE, Roadmap Epigenomics, and BLUEPRINT projects. Application of eFORGE to 20 publicly available EWAS datasets identified disease-relevant cell types for several common diseases, a stem cell-like signature in cancer, and demonstrated the ability to detect cell-composition effects for EWAS performed on heterogeneous tissues. Our approach bridges the gap between large-scale epigenomics data and EWAS-derived target selection to yield insight into disease etiology.
first_indexed 2024-03-07T03:53:08Z
format Journal article
id oxford-uuid:c1f6db82-2c18-40f5-a3b3-9d24e23233c2
institution University of Oxford
language English
last_indexed 2024-03-07T03:53:08Z
publishDate 2016
publisher Elsevier
record_format dspace
spelling oxford-uuid:c1f6db82-2c18-40f5-a3b3-9d24e23233c22022-03-27T06:05:34ZeFORGE: A Tool for Identifying Cell Type-Specific Signal in Epigenomic DataJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:c1f6db82-2c18-40f5-a3b3-9d24e23233c2EnglishSymplectic Elements at OxfordElsevier2016Breeze, CPaul, Dvan Dongen, JButcher, LAmbrose, JBarrett, JLowe, RRakyan, VIotchkova, VFrontini, MDownes, KOuwehand, WLaperle, JJacques, PBourque, GBergmann, ASiebert, RVellenga, ESaeed, SMatarese, FMartens, JStunnenberg, HTeschendorff, AHerrero, JBirney, EDunham, IBeck, SEpigenome-wide association studies (EWAS) provide an alternative approach for studying human disease through consideration of non-genetic variants such as altered DNA methylation. To advance the complex interpretation of EWAS, we developed eFORGE (http://eforge.cs.ucl.ac.uk/), a new standalone and web-based tool for the analysis and interpretation of EWAS data. eFORGE determines the cell type-specific regulatory component of a set of EWAS-identified differentially methylated positions. This is achieved by detecting enrichment of overlap with DNase I hypersensitive sites across 454 samples (tissues, primary cell types, and cell lines) from the ENCODE, Roadmap Epigenomics, and BLUEPRINT projects. Application of eFORGE to 20 publicly available EWAS datasets identified disease-relevant cell types for several common diseases, a stem cell-like signature in cancer, and demonstrated the ability to detect cell-composition effects for EWAS performed on heterogeneous tissues. Our approach bridges the gap between large-scale epigenomics data and EWAS-derived target selection to yield insight into disease etiology.
spellingShingle Breeze, C
Paul, D
van Dongen, J
Butcher, L
Ambrose, J
Barrett, J
Lowe, R
Rakyan, V
Iotchkova, V
Frontini, M
Downes, K
Ouwehand, W
Laperle, J
Jacques, P
Bourque, G
Bergmann, A
Siebert, R
Vellenga, E
Saeed, S
Matarese, F
Martens, J
Stunnenberg, H
Teschendorff, A
Herrero, J
Birney, E
Dunham, I
Beck, S
eFORGE: A Tool for Identifying Cell Type-Specific Signal in Epigenomic Data
title eFORGE: A Tool for Identifying Cell Type-Specific Signal in Epigenomic Data
title_full eFORGE: A Tool for Identifying Cell Type-Specific Signal in Epigenomic Data
title_fullStr eFORGE: A Tool for Identifying Cell Type-Specific Signal in Epigenomic Data
title_full_unstemmed eFORGE: A Tool for Identifying Cell Type-Specific Signal in Epigenomic Data
title_short eFORGE: A Tool for Identifying Cell Type-Specific Signal in Epigenomic Data
title_sort eforge a tool for identifying cell type specific signal in epigenomic data
work_keys_str_mv AT breezec eforgeatoolforidentifyingcelltypespecificsignalinepigenomicdata
AT pauld eforgeatoolforidentifyingcelltypespecificsignalinepigenomicdata
AT vandongenj eforgeatoolforidentifyingcelltypespecificsignalinepigenomicdata
AT butcherl eforgeatoolforidentifyingcelltypespecificsignalinepigenomicdata
AT ambrosej eforgeatoolforidentifyingcelltypespecificsignalinepigenomicdata
AT barrettj eforgeatoolforidentifyingcelltypespecificsignalinepigenomicdata
AT lower eforgeatoolforidentifyingcelltypespecificsignalinepigenomicdata
AT rakyanv eforgeatoolforidentifyingcelltypespecificsignalinepigenomicdata
AT iotchkovav eforgeatoolforidentifyingcelltypespecificsignalinepigenomicdata
AT frontinim eforgeatoolforidentifyingcelltypespecificsignalinepigenomicdata
AT downesk eforgeatoolforidentifyingcelltypespecificsignalinepigenomicdata
AT ouwehandw eforgeatoolforidentifyingcelltypespecificsignalinepigenomicdata
AT laperlej eforgeatoolforidentifyingcelltypespecificsignalinepigenomicdata
AT jacquesp eforgeatoolforidentifyingcelltypespecificsignalinepigenomicdata
AT bourqueg eforgeatoolforidentifyingcelltypespecificsignalinepigenomicdata
AT bergmanna eforgeatoolforidentifyingcelltypespecificsignalinepigenomicdata
AT siebertr eforgeatoolforidentifyingcelltypespecificsignalinepigenomicdata
AT vellengae eforgeatoolforidentifyingcelltypespecificsignalinepigenomicdata
AT saeeds eforgeatoolforidentifyingcelltypespecificsignalinepigenomicdata
AT mataresef eforgeatoolforidentifyingcelltypespecificsignalinepigenomicdata
AT martensj eforgeatoolforidentifyingcelltypespecificsignalinepigenomicdata
AT stunnenbergh eforgeatoolforidentifyingcelltypespecificsignalinepigenomicdata
AT teschendorffa eforgeatoolforidentifyingcelltypespecificsignalinepigenomicdata
AT herreroj eforgeatoolforidentifyingcelltypespecificsignalinepigenomicdata
AT birneye eforgeatoolforidentifyingcelltypespecificsignalinepigenomicdata
AT dunhami eforgeatoolforidentifyingcelltypespecificsignalinepigenomicdata
AT becks eforgeatoolforidentifyingcelltypespecificsignalinepigenomicdata