Amortized Monte Carlo integration
Current approaches to amortizing Bayesian inference focus solely on approximating the posterior distribution. Typically, this approximation is, in turn, used to calculate expectations for one or more target functions{—}a computational pipeline which is inefficient when the target function(s) are kno...
Egile Nagusiak: | Goliński, A, Wood, F, Rainforth, T |
---|---|
Formatua: | Conference item |
Argitaratua: |
Proceedings of Machine Learning Research
2019
|
Antzeko izenburuak
-
Faithful inversion of generative models for effective amortized inference
nork: Webb, S, et al.
Argitaratua: (2019) -
On nesting Monte Carlo estimators
nork: Rainforth, T, et al.
Argitaratua: (2019) -
Auto-encoding sequential Monte Carlo
nork: Le, T, et al.
Argitaratua: (2018) -
Amortized rejection sampling in universal probabilistic programming
nork: Naderiparizi, S, et al.
Argitaratua: (2022) -
The Difference between Accounting Amortization and Fiscal Amortization
nork: Florescu Nicu, et al.
Argitaratua: (2015-06-01)