Amortized Monte Carlo integration
Current approaches to amortizing Bayesian inference focus solely on approximating the posterior distribution. Typically, this approximation is, in turn, used to calculate expectations for one or more target functions{—}a computational pipeline which is inefficient when the target function(s) are kno...
Hlavní autoři: | Goliński, A, Wood, F, Rainforth, T |
---|---|
Médium: | Conference item |
Vydáno: |
Proceedings of Machine Learning Research
2019
|
Podobné jednotky
-
Faithful inversion of generative models for effective amortized inference
Autor: Webb, S, a další
Vydáno: (2019) -
On nesting Monte Carlo estimators
Autor: Rainforth, T, a další
Vydáno: (2019) -
Auto-encoding sequential Monte Carlo
Autor: Le, T, a další
Vydáno: (2018) -
Amortized rejection sampling in universal probabilistic programming
Autor: Naderiparizi, S, a další
Vydáno: (2022) -
The Difference between Accounting Amortization and Fiscal Amortization
Autor: Florescu Nicu, a další
Vydáno: (2015-06-01)