Amortized Monte Carlo integration
Current approaches to amortizing Bayesian inference focus solely on approximating the posterior distribution. Typically, this approximation is, in turn, used to calculate expectations for one or more target functions{—}a computational pipeline which is inefficient when the target function(s) are kno...
Auteurs principaux: | Goliński, A, Wood, F, Rainforth, T |
---|---|
Format: | Conference item |
Publié: |
Proceedings of Machine Learning Research
2019
|
Documents similaires
-
Faithful inversion of generative models for effective amortized inference
par: Webb, S, et autres
Publié: (2019) -
On nesting Monte Carlo estimators
par: Rainforth, T, et autres
Publié: (2019) -
Auto-encoding sequential Monte Carlo
par: Le, T, et autres
Publié: (2018) -
Amortized rejection sampling in universal probabilistic programming
par: Naderiparizi, S, et autres
Publié: (2022) -
The Difference between Accounting Amortization and Fiscal Amortization
par: Florescu Nicu, et autres
Publié: (2015-06-01)