Amortized Monte Carlo integration
Current approaches to amortizing Bayesian inference focus solely on approximating the posterior distribution. Typically, this approximation is, in turn, used to calculate expectations for one or more target functions{—}a computational pipeline which is inefficient when the target function(s) are kno...
Main Authors: | Goliński, A, Wood, F, Rainforth, T |
---|---|
Formato: | Conference item |
Publicado: |
Proceedings of Machine Learning Research
2019
|
Títulos similares
-
Faithful inversion of generative models for effective amortized inference
por: Webb, S, et al.
Publicado: (2019) -
On nesting Monte Carlo estimators
por: Rainforth, T, et al.
Publicado: (2019) -
Auto-encoding sequential Monte Carlo
por: Le, T, et al.
Publicado: (2018) -
Amortized rejection sampling in universal probabilistic programming
por: Naderiparizi, S, et al.
Publicado: (2022) -
The Difference between Accounting Amortization and Fiscal Amortization
por: Florescu Nicu, et al.
Publicado: (2015-06-01)