Amortized Monte Carlo integration
Current approaches to amortizing Bayesian inference focus solely on approximating the posterior distribution. Typically, this approximation is, in turn, used to calculate expectations for one or more target functions{—}a computational pipeline which is inefficient when the target function(s) are kno...
Main Authors: | Goliński, A, Wood, F, Rainforth, T |
---|---|
פורמט: | Conference item |
יצא לאור: |
Proceedings of Machine Learning Research
2019
|
פריטים דומים
-
Faithful inversion of generative models for effective amortized inference
מאת: Webb, S, et al.
יצא לאור: (2019) -
On nesting Monte Carlo estimators
מאת: Rainforth, T, et al.
יצא לאור: (2019) -
Auto-encoding sequential Monte Carlo
מאת: Le, T, et al.
יצא לאור: (2018) -
Amortized rejection sampling in universal probabilistic programming
מאת: Naderiparizi, S, et al.
יצא לאור: (2022) -
The Difference between Accounting Amortization and Fiscal Amortization
מאת: Florescu Nicu, et al.
יצא לאור: (2015-06-01)