Amortized Monte Carlo integration
Current approaches to amortizing Bayesian inference focus solely on approximating the posterior distribution. Typically, this approximation is, in turn, used to calculate expectations for one or more target functions{—}a computational pipeline which is inefficient when the target function(s) are kno...
Autori principali: | Goliński, A, Wood, F, Rainforth, T |
---|---|
Natura: | Conference item |
Pubblicazione: |
Proceedings of Machine Learning Research
2019
|
Documenti analoghi
Documenti analoghi
-
Faithful inversion of generative models for effective amortized inference
di: Webb, S, et al.
Pubblicazione: (2019) -
On nesting Monte Carlo estimators
di: Rainforth, T, et al.
Pubblicazione: (2019) -
Auto-encoding sequential Monte Carlo
di: Le, T, et al.
Pubblicazione: (2018) -
Amortized rejection sampling in universal probabilistic programming
di: Naderiparizi, S, et al.
Pubblicazione: (2022) -
The Difference between Accounting Amortization and Fiscal Amortization
di: Florescu Nicu, et al.
Pubblicazione: (2015-06-01)