Amortized Monte Carlo integration
Current approaches to amortizing Bayesian inference focus solely on approximating the posterior distribution. Typically, this approximation is, in turn, used to calculate expectations for one or more target functions{—}a computational pipeline which is inefficient when the target function(s) are kno...
主要な著者: | Goliński, A, Wood, F, Rainforth, T |
---|---|
フォーマット: | Conference item |
出版事項: |
Proceedings of Machine Learning Research
2019
|
類似資料
-
Faithful inversion of generative models for effective amortized inference
著者:: Webb, S, 等
出版事項: (2019) -
On nesting Monte Carlo estimators
著者:: Rainforth, T, 等
出版事項: (2019) -
Auto-encoding sequential Monte Carlo
著者:: Le, T, 等
出版事項: (2018) -
Amortized rejection sampling in universal probabilistic programming
著者:: Naderiparizi, S, 等
出版事項: (2022) -
The Difference between Accounting Amortization and Fiscal Amortization
著者:: Florescu Nicu, 等
出版事項: (2015-06-01)