Amortized Monte Carlo integration
Current approaches to amortizing Bayesian inference focus solely on approximating the posterior distribution. Typically, this approximation is, in turn, used to calculate expectations for one or more target functions{—}a computational pipeline which is inefficient when the target function(s) are kno...
Główni autorzy: | Goliński, A, Wood, F, Rainforth, T |
---|---|
Format: | Conference item |
Wydane: |
Proceedings of Machine Learning Research
2019
|
Podobne zapisy
-
Faithful inversion of generative models for effective amortized inference
od: Webb, S, i wsp.
Wydane: (2019) -
On nesting Monte Carlo estimators
od: Rainforth, T, i wsp.
Wydane: (2019) -
Auto-encoding sequential Monte Carlo
od: Le, T, i wsp.
Wydane: (2018) -
Amortized rejection sampling in universal probabilistic programming
od: Naderiparizi, S, i wsp.
Wydane: (2022) -
The Difference between Accounting Amortization and Fiscal Amortization
od: Florescu Nicu, i wsp.
Wydane: (2015-06-01)