Amortized Monte Carlo integration
Current approaches to amortizing Bayesian inference focus solely on approximating the posterior distribution. Typically, this approximation is, in turn, used to calculate expectations for one or more target functions{—}a computational pipeline which is inefficient when the target function(s) are kno...
Principais autores: | Goliński, A, Wood, F, Rainforth, T |
---|---|
Formato: | Conference item |
Publicado em: |
Proceedings of Machine Learning Research
2019
|
Registros relacionados
-
Faithful inversion of generative models for effective amortized inference
por: Webb, S, et al.
Publicado em: (2019) -
On nesting Monte Carlo estimators
por: Rainforth, T, et al.
Publicado em: (2019) -
Auto-encoding sequential Monte Carlo
por: Le, T, et al.
Publicado em: (2018) -
Amortized rejection sampling in universal probabilistic programming
por: Naderiparizi, S, et al.
Publicado em: (2022) -
The Difference between Accounting Amortization and Fiscal Amortization
por: Florescu Nicu, et al.
Publicado em: (2015-06-01)