Amortized Monte Carlo integration
Current approaches to amortizing Bayesian inference focus solely on approximating the posterior distribution. Typically, this approximation is, in turn, used to calculate expectations for one or more target functions{—}a computational pipeline which is inefficient when the target function(s) are kno...
Главные авторы: | Goliński, A, Wood, F, Rainforth, T |
---|---|
Формат: | Conference item |
Опубликовано: |
Proceedings of Machine Learning Research
2019
|
Схожие документы
-
Faithful inversion of generative models for effective amortized inference
по: Webb, S, и др.
Опубликовано: (2019) -
On nesting Monte Carlo estimators
по: Rainforth, T, и др.
Опубликовано: (2019) -
Auto-encoding sequential Monte Carlo
по: Le, T, и др.
Опубликовано: (2018) -
Amortized rejection sampling in universal probabilistic programming
по: Naderiparizi, S, и др.
Опубликовано: (2022) -
The Difference between Accounting Amortization and Fiscal Amortization
по: Florescu Nicu, и др.
Опубликовано: (2015-06-01)