Amortized Monte Carlo integration
Current approaches to amortizing Bayesian inference focus solely on approximating the posterior distribution. Typically, this approximation is, in turn, used to calculate expectations for one or more target functions{—}a computational pipeline which is inefficient when the target function(s) are kno...
Main Authors: | Goliński, A, Wood, F, Rainforth, T |
---|---|
格式: | Conference item |
出版: |
Proceedings of Machine Learning Research
2019
|
相似书籍
-
Faithful inversion of generative models for effective amortized inference
由: Webb, S, et al.
出版: (2019) -
On nesting Monte Carlo estimators
由: Rainforth, T, et al.
出版: (2019) -
Auto-encoding sequential Monte Carlo
由: Le, T, et al.
出版: (2018) -
Amortized rejection sampling in universal probabilistic programming
由: Naderiparizi, S, et al.
出版: (2022) -
The Difference between Accounting Amortization and Fiscal Amortization
由: Florescu Nicu, et al.
出版: (2015-06-01)