An LP-designed algorithm for constraint satisfaction
The class Max (r, 2)-CSP consists of constraint satisfaction problems with at most two r-valued variables per clause. For instances with n variables and m binary clauses, we present an (O) over tilde (r(19m/100))-time algorithm. It is the fastest algorithm for most problems in the class (including M...
Hlavní autoři: | Scott, A, Sorkin, G |
---|---|
Médium: | Conference item |
Vydáno: |
2006
|
Podobné jednotky
-
Polynomial Constraint Satisfaction Problems, Graph Bisection, and the Ising Partition Function
Autor: Scott, A, a další
Vydáno: (2009) -
Linear-programming design and analysis of fast algorithms for Max 2-CSP
Autor: Scott, A, a další
Vydáno: (2007) -
Applying quantum algorithms to constraint satisfaction problems
Autor: Earl Campbell, a další
Vydáno: (2019-07-01) -
LP Well-Posedness for Bilevel Vector Equilibrium and Optimization Problems with Equilibrium Constraints
Autor: Phan Quoc Khanh, a další
Vydáno: (2014-01-01) -
Message-Passing Algorithms and Improved LP Decoding
Autor: Arora, Sanjeev, a další
Vydáno: (2021)