An LP-designed algorithm for constraint satisfaction
The class Max (r, 2)-CSP consists of constraint satisfaction problems with at most two r-valued variables per clause. For instances with n variables and m binary clauses, we present an (O) over tilde (r(19m/100))-time algorithm. It is the fastest algorithm for most problems in the class (including M...
Päätekijät: | Scott, A, Sorkin, G |
---|---|
Aineistotyyppi: | Conference item |
Julkaistu: |
2006
|
Samankaltaisia teoksia
-
Polynomial Constraint Satisfaction Problems, Graph Bisection, and the Ising Partition Function
Tekijä: Scott, A, et al.
Julkaistu: (2009) -
Linear-programming design and analysis of fast algorithms for Max 2-CSP
Tekijä: Scott, A, et al.
Julkaistu: (2007) -
Applying quantum algorithms to constraint satisfaction problems
Tekijä: Earl Campbell, et al.
Julkaistu: (2019-07-01) -
LP Well-Posedness for Bilevel Vector Equilibrium and Optimization Problems with Equilibrium Constraints
Tekijä: Phan Quoc Khanh, et al.
Julkaistu: (2014-01-01) -
Message-Passing Algorithms and Improved LP Decoding
Tekijä: Arora, Sanjeev, et al.
Julkaistu: (2021)