Homomorphically encrypted gradient descent algorithms for quadratic programming
In this paper, we evaluate the different fully homomorphic encryption schemes, propose an implementation, and numerically analyze the applicability of gradient descent algorithms to solve quadratic programming in a homomorphic encryption setup. The limit on the multiplication depth of homomorphic en...
Hlavní autoři: | Bertolace, A, Gatsis, K, Margellos, K |
---|---|
Médium: | Conference item |
Jazyk: | English |
Vydáno: |
IEEE
2024
|
Podobné jednotky
-
Cloud-based quadratic optimization with partially homomorphic encryption
Autor: Alexandru, AB, a další
Vydáno: (2020) -
Privacy-aware quadratic optimization using partially homomorphic encryption
Autor: Shoukry, Y, a další
Vydáno: (2016) -
Robust optimization for adversarial learning with finite sample complexity guarantees
Autor: Bertolace, A, a další
Vydáno: (2024) -
Implementing the Grover algorithm in homomorphic encryption schemes
Autor: Pablo Fernández, a další
Vydáno: (2024-11-01) -
Homomorphic Encryption on GPU
Autor: Ali Sah Ozcan, a další
Vydáno: (2023-01-01)