Homomorphically encrypted gradient descent algorithms for quadratic programming
In this paper, we evaluate the different fully homomorphic encryption schemes, propose an implementation, and numerically analyze the applicability of gradient descent algorithms to solve quadratic programming in a homomorphic encryption setup. The limit on the multiplication depth of homomorphic en...
Egile Nagusiak: | Bertolace, A, Gatsis, K, Margellos, K |
---|---|
Formatua: | Conference item |
Hizkuntza: | English |
Argitaratua: |
IEEE
2024
|
Antzeko izenburuak
-
Cloud-based quadratic optimization with partially homomorphic encryption
nork: Alexandru, AB, et al.
Argitaratua: (2020) -
Privacy-aware quadratic optimization using partially homomorphic encryption
nork: Shoukry, Y, et al.
Argitaratua: (2016) -
Robust optimization for adversarial learning with finite sample complexity guarantees
nork: Bertolace, A, et al.
Argitaratua: (2024) -
Implementing the Grover algorithm in homomorphic encryption schemes
nork: Pablo Fernández, et al.
Argitaratua: (2024-11-01) -
Homomorphic Encryption on GPU
nork: Ali Sah Ozcan, et al.
Argitaratua: (2023-01-01)