Homomorphically encrypted gradient descent algorithms for quadratic programming
In this paper, we evaluate the different fully homomorphic encryption schemes, propose an implementation, and numerically analyze the applicability of gradient descent algorithms to solve quadratic programming in a homomorphic encryption setup. The limit on the multiplication depth of homomorphic en...
主要な著者: | Bertolace, A, Gatsis, K, Margellos, K |
---|---|
フォーマット: | Conference item |
言語: | English |
出版事項: |
IEEE
2024
|
類似資料
-
Cloud-based quadratic optimization with partially homomorphic encryption
著者:: Alexandru, AB, 等
出版事項: (2020) -
Privacy-aware quadratic optimization using partially homomorphic encryption
著者:: Shoukry, Y, 等
出版事項: (2016) -
Robust optimization for adversarial learning with finite sample complexity guarantees
著者:: Bertolace, A, 等
出版事項: (2024) -
Implementing the Grover algorithm in homomorphic encryption schemes
著者:: Pablo Fernández, 等
出版事項: (2024-11-01) -
Homomorphic Encryption on GPU
著者:: Ali Sah Ozcan, 等
出版事項: (2023-01-01)