Homomorphically encrypted gradient descent algorithms for quadratic programming
In this paper, we evaluate the different fully homomorphic encryption schemes, propose an implementation, and numerically analyze the applicability of gradient descent algorithms to solve quadratic programming in a homomorphic encryption setup. The limit on the multiplication depth of homomorphic en...
Główni autorzy: | Bertolace, A, Gatsis, K, Margellos, K |
---|---|
Format: | Conference item |
Język: | English |
Wydane: |
IEEE
2024
|
Podobne zapisy
-
Cloud-based quadratic optimization with partially homomorphic encryption
od: Alexandru, AB, i wsp.
Wydane: (2020) -
Privacy-aware quadratic optimization using partially homomorphic encryption
od: Shoukry, Y, i wsp.
Wydane: (2016) -
Robust optimization for adversarial learning with finite sample complexity guarantees
od: Bertolace, A, i wsp.
Wydane: (2024) -
Implementing the Grover algorithm in homomorphic encryption schemes
od: Pablo Fernández, i wsp.
Wydane: (2024-11-01) -
Homomorphic Encryption on GPU
od: Ali Sah Ozcan, i wsp.
Wydane: (2023-01-01)