Homomorphically encrypted gradient descent algorithms for quadratic programming
In this paper, we evaluate the different fully homomorphic encryption schemes, propose an implementation, and numerically analyze the applicability of gradient descent algorithms to solve quadratic programming in a homomorphic encryption setup. The limit on the multiplication depth of homomorphic en...
Главные авторы: | Bertolace, A, Gatsis, K, Margellos, K |
---|---|
Формат: | Conference item |
Язык: | English |
Опубликовано: |
IEEE
2024
|
Схожие документы
-
Cloud-based quadratic optimization with partially homomorphic encryption
по: Alexandru, AB, и др.
Опубликовано: (2020) -
Privacy-aware quadratic optimization using partially homomorphic encryption
по: Shoukry, Y, и др.
Опубликовано: (2016) -
Robust optimization for adversarial learning with finite sample complexity guarantees
по: Bertolace, A, и др.
Опубликовано: (2024) -
Implementing the Grover algorithm in homomorphic encryption schemes
по: Pablo Fernández, и др.
Опубликовано: (2024-11-01) -
Homomorphic Encryption on GPU
по: Ali Sah Ozcan, и др.
Опубликовано: (2023-01-01)