Computation of capillary surfaces for the Laplace–Young equation

A novel hybrid finite-element/finite-volume numerical method is developed to determine the capillary rise of a liquid with a free surface (under surface tension and gravitational forces). The few known exact analytical solutions are used to verify the numerical computations and establish their accur...

Celý popis

Podrobná bibliografie
Hlavní autoři: Scott, C, Sander, G, Norbury, J
Médium: Journal article
Vydáno: 2005
Popis
Shrnutí:A novel hybrid finite-element/finite-volume numerical method is developed to determine the capillary rise of a liquid with a free surface (under surface tension and gravitational forces). The few known exact analytical solutions are used to verify the numerical computations and establish their accuracy for a range of liquid contact angles. The numerical method is then used to ascertain the limitations of a number of theoretical approximations to solutions for the capillary rise in the linearized limit, for special geometries such as plane walls, concentric cylinders and in a wedge of arbitrary included angle. The existence of a critical wedge angle for a given contact angle is verified. However, the effect of slight practical rounding of wedge corners dramatically reduces the theoretical corner height.