Computation of capillary surfaces for the Laplace–Young equation

A novel hybrid finite-element/finite-volume numerical method is developed to determine the capillary rise of a liquid with a free surface (under surface tension and gravitational forces). The few known exact analytical solutions are used to verify the numerical computations and establish their accur...

詳細記述

書誌詳細
主要な著者: Scott, C, Sander, G, Norbury, J
フォーマット: Journal article
出版事項: 2005
その他の書誌記述
要約:A novel hybrid finite-element/finite-volume numerical method is developed to determine the capillary rise of a liquid with a free surface (under surface tension and gravitational forces). The few known exact analytical solutions are used to verify the numerical computations and establish their accuracy for a range of liquid contact angles. The numerical method is then used to ascertain the limitations of a number of theoretical approximations to solutions for the capillary rise in the linearized limit, for special geometries such as plane walls, concentric cylinders and in a wedge of arbitrary included angle. The existence of a critical wedge angle for a given contact angle is verified. However, the effect of slight practical rounding of wedge corners dramatically reduces the theoretical corner height.