Multifidelity approximate Bayesian computation with sequential Monte Carlo parameter sampling

Multifidelity approximate Bayesian computation (MF-ABC) is a likelihood-free technique for parameter inference that exploits model approximations to significantly increase the speed of ABC algorithms (Prescott and Baker, 2020). Previous work has considered MF-ABC only in the context of rejection sam...

תיאור מלא

מידע ביבליוגרפי
Main Authors: Prescott, TP, Baker, RE
פורמט: Journal article
שפה:English
יצא לאור: Society for Industrial and Applied Mathematics 2021