Summary: | <p>In this thesis we study Spin(7)-manifolds, that is Riemannian 8-manifolds with torsion-free Spin(7)-structures, and Cayley submanifolds of such manifolds. We use a construction of compact Spin(7)-manifolds from Calabi–Yau 4-orbifolds with antiholomorphic involutions, due to Joyce, to find new examples of compact Spin(7)-manifolds. We search the class of well-formed quasismooth hypersurfaces in weighted projective spaces for suitable Calabi–Yau 4-orbifolds. We consider antiholomorphic involutions induced by the restriction of an involution of the ambient weighted projective space and we classify anti-holomorphic involutions of weighted projective spaces.</p> <p>We consider the moduli problem for Cayley submanifolds of Spin(7)-manifolds and show that there is a fine moduli space of unobstructed Cayley submanifolds. This result improves on the work of McLean in that we consider the global issues of how to patch together the local result of McLean. We also use the work of Kriegl and Michor on ‘convenient manifolds’ to show that this moduli space carries a universal family of Cayley submanifolds.</p> <p>Using the analysis necessary for the study of the moduli problem of Cayleys we find examples of compact Cayley submanifolds in any compact Spin(7)-manifold arising, using Joyce’s construction, from a suitable Calabi–Yau 4-orbifold with antiholomorphic involution. For the analysis to work, we need to show that a given Cayley submanifold is unobstructed. To show that particular examples of Cayley submanifolds are unobstructed, we relate the obstructions of complex surfaces in Calabi–Yau 4-folds as complex submanifolds to the obstructions as Cayley submanifolds.</p>
|