Vanishing Viscosity Limit of the Navier-Stokes Equations to the Euler Equations for Compressible Fluid Flow
We establish the vanishing viscosity limit of the Navier-Stokes equations to the isentropic Euler equations for one-dimensional compressible fluid flow. For the Navier-Stokes equations, there exist no natural invariant regions for the equations with the real physical viscosity term so that the unifo...
Huvudupphovsmän: | Chen, G, Perepelitsa, M |
---|---|
Materialtyp: | Journal article |
Språk: | English |
Publicerad: |
2010
|
Liknande verk
Liknande verk
-
Vanishing viscosity limit of the three-dimensional barotropic compressible Navier–Stokes equations with degenerate viscosities and far-field vacuum
av: Chen, G, et al.
Publicerad: (2022) -
Vanishing viscosity approach to the compressible Euler equations for transonic nozzle and spherically symmetric flows
av: Chen, G, et al.
Publicerad: (2018) -
Vanishing viscosity limit for the 3D nonhomogeneous incompressible Navier-Stokes equation with special slip boundary condition
av: Pengfei Chen, et al.
Publicerad: (2017-07-01) -
On the Navier-Stokes equations for exothermically reacting compressible fluids
av: Chen, G, et al.
Publicerad: (2002) -
On the Navier-Stokes equations for exothermically reacting compressible fluids
av: Chen, G, et al.
Publicerad: (2002)