Summary: | The primate amygdala is implicated in the control of behavioral responses to foods and in stimulus-reinforcement learning, but only its taste representation of oral stimuli has been investigated previously. Of 1416 macaque amygdala neurons recorded, 44 (3.1%) responded to oral stimuli. Of the 44 orally responsive neurons, 17 (39%) represent the viscosity of oral stimuli, tested using carboxymethyl-cellulose in the range 1-10,000 cP. Two neurons (5%) responded to fat in the mouth by encoding its texture (shown by the responses of these neurons to a range of fats, and also to non-fat oils such as silicone oil ((Si(CH(3))(2)O)(n)) and mineral oil (pure hydrocarbon), but no or small responses to the cellulose viscosity series or to the fatty acids linoleic acid and lauric acid). Of the 44 neurons, three (7%) responded to gritty texture (produced by microspheres suspended in cellulose). Eighteen neurons (41%) responded to the temperature of liquid in the mouth. Some amygdala neurons responded to capsaicin, and some to fatty acids (but not to fats in the mouth). Some amygdala neurons respond to taste, texture and temperature unimodally, but others combine these inputs. These results provide fundamental evidence about the information channels used to represent the texture and flavor of food in a part of the brain important in appetitive responses to food and in learning associations to reinforcing oral stimuli, and are relevant to understanding the physiological and pathophysiological processes related to food intake, food selection, and the effects of variety of food texture in combination with taste and other inputs on food intake.
|