Parameter identifiability and model selection for sigmoid population growth models
Sigmoid growth models, such as the logistic, Gompertz and Richards’ models, are widely used to study population dynamics ranging from microscopic populations of cancer cells, to continental-scale human populations. Fundamental questions about model selection and parameter estimation are critical if...
Main Authors: | Simpson, MJ, Browning, AP, Warne, DJ, Maclaren, OJ, Baker, RE |
---|---|
格式: | Journal article |
语言: | English |
出版: |
Elsevier
2021
|
相似书籍
-
Identifiability analysis for stochastic differential equation models in systems biology
由: Browning, AP, et al.
出版: (2020) -
Practical parameter identifiability for spatio-temporal models of cell invasion
由: Simpson, MJ, et al.
出版: (2020) -
Profile likelihood analysis for a stochastic model of diffusion in heterogeneous media
由: Simpson, MJ, et al.
出版: (2021) -
Rapid Bayesian inference for expensive stochastic models
由: Warne, DJ, et al.
出版: (2021) -
Reliable and efficient parameter estimation using approximate continuum limit descriptions of stochastic models
由: Simpson, MJ, et al.
出版: (2022)